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A B S T R A C T   

Photo identification (PID) in animal studies has been a widely used method for identifying individuals of many 
species based on unique natural markings and patterns. The use of PID has facilitated investigations in which 
residency, home ranges, and growth rates have been assessed. However, many PID studies in the past have relied 
heavily on manual photo matching. More recently, computer-assisted PID programs have been used to identify 
individuals of different sea turtle species, and reduced time investment in identifying individuals within specific 
populations. Still, some computer-based PID programs require significant time investment in ensuring photos are 
captured at consistent angles and lighting conditions, pre-processing image manipulations, and post-processing 
manual matching confirmation of potential matches provided by the program. For PID to be an effective time and 
money saving mechanism for wildlife research and conservation, these common drawbacks need to be addressed 
with a computer-assisted PID program that reduces manipulation and time investment burden, and consistently 
provides accurate and reliable results. In this study, we evaluated the accuracy of matching individual face 
images using the HotSpotter (HS) PID program by building a database of 2136 images of hawksbill (Eretmochelys 
imbricata) turtles, then querying the database with 158 new images to find matches for individual turtles. 
Overall, we found that with almost no pre-processing manipulation, and with images from highly variable un-
derwater conditions, qualities, and angles, HS correctly matched individuals in the first choice 80% of the time, 
increasing to 91% in the first six choices. When assessing in-water images only, accuracy for matching increased 
from 84% in the first choice, to 94% by the sixth choice. We suggest that the integration of HS technology into a 
global, web-based PID system will increase the ability to remotely identify individual marine organisms on a 
global scale, and improve usability for community scientists who may have little to no technical training.   

1. Introduction 

The use of photo-identification (PID) in animal research is well 
established and has been demonstrated to provide valuable information 
on individual animal movements, growth rates, and species population 
status (Riley et al., 2010). This is because natural markings and color 
patterns may both be stable over several life history stages (Carpentier 

et al., 2016; Van Horn et al., 2014), and unique to individual animals 
within a population (Gardiner et al., 2014; Vaissi et al., 2018), unlike 
physical tags or marks placed on individual animals by researchers. As a 
result, various PID techniques have been used to re-identify and track 
individual animals over time, including manual visual comparisons of 
photographs, and the use of a number of computer-assisted PID pro-
grams and processes. Several studies have used one or more of these 
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techniques in work with terrestrial species, such as reptiles (Gardiner 
et al., 2014; Knox et al., 2013; Sacchi et al., 2010; Sreekar et al., 2013), 
felids (McClintock et al., 2013), ursids (Anderson et al., 2010; Anderson 
et al., 2007), African equids (Rubenstein et al., 2018), and rhinocerids 
(Jewell et al., 2001), as well as dozens of marine species, such as whale 
sharks (Graham and Roberts, 2007; Holmberg et al., 2008; Holmberg 
et al., 2009; Riley et al., 2010), sharks (Towner et al., 2013), whales 
(Blackmer et al., 2000; Frasier et al., 2009), seals (Karlsson et al., 2005), 
seadragons (Martin-Smith, 2011), lionfish (Chaves et al., 2016), and 
several marine invertebrates (Gallardo-Escarate et al., 2007; Gosselin 
et al., 2007; Raj, 1998). 

PID in sea turtle research is relatively new and has only recently been 
reported as a useful tool for the identification and conservation of sea 
turtle species. Possibly the first use of PID in sea turtle research was 
reported in 1996 by McDonald and Dutton (1996) on matching unique 
pineal spots on the heads of leatherback turtles (Dermochelys coriacia). In 
1998, Richardson et al. (2000) reported manually matching videos of 
green turtles (Chelonia mydas) in Hawaii with a small number (n = 93) of 
facial scale photographs. Recently, several sea turtle studies have also 

used manual visual matching of photographs to understand nesting fe-
male remigration patterns (Chew et al., 2015; Valdés et al., 2014), 
examine population sex ratios (Su et al., 2015) and long-term differences 
in intersexual survival rates (Schofield et al., 2020), investigate hatch-
ling scale pattern stability over time (Carpentier et al., 2016; Chew et al., 
2015), identify individual turtles in their foraging grounds over time 
(Dunbar et al., 2014; Lloyd et al., 2012; Schofield et al., 2008; Su et al., 
2015), and estimate flipper tag loss (Reisser et al., 2008). However, for 
PID investigations using manual methods, both the time and financial 
commitment to retrieve, assess, and determine positive matches through 
manual visual comparisons becomes prohibitive as the number of pho-
tographs in a database increases (Dunbar et al., 2014; Jean et al., 2010). 
Recent advances in computer algorithms have facilitated partial auto-
mation of PID in sea turtle research, allowing for ease in identification of 
individual sea turtles over time within a single study area (Carter et al., 
2014; Chassagneux et al., 2013; Dunbar and Ito, 2015; Dunbar et al., 
2014; Jean et al., 2010), identification of dead turtles (Long, 2016), and 
the identification of scale-less leatherback turtles during nesting 
(McDonald and Dutton, 1996; Pauwels et al., 2008). 

Fig. 1. Map of study area in the Sandy Bay West End Marine Reserve (SBWEMR), Bay Islands, Honduras. The black line indicates the approximate area of the 
SBWEMR and the inset shows the regional location of Roatán. 

S.G. Dunbar et al.                                                                                                                                                                                                                              



Journal of Experimental Marine Biology and Ecology 535 (2021) 151490

3

There are, however, consistent drawbacks in the use of computer- 
assisted PID across animal studies. Several authors have suggested 
that automated matching can be hindered by the use of low-quality 
photographs in the computer database. For example, in her study of 
cheetahs over a 25-year period, Kelly (2001) found that up to 33% of 
matches were unreported, and also discovered matching accuracy 
decreased when poor quality images were used. Long (2016) found that 
while using the NaturePatternMatch (NPM) pattern recognition soft-
ware (Stoddard et al., 2014), poor-quality underwater photos of sea 
turtles often resulted in no matches. Therefore, these results necessitated 
that new photos be manually compared with all other photos to deter-
mine if the animals had a match in the database. Likewise, Carter et al. 
(2014) and Calmanovici et al. (2018) suggested that using images with 
excessive blur, lighting changes, angle differences, and low visibility can 
hinder the association of images within computer PID software. Another 
drawback of several computerized PID programs is the requirement to 
utilize photographs taken from consistent angles and distances relative 
to the subject. For example, Chaves et al. (2016) reported that only 
photos of lionfish (Pterois volitans) taken consistently at right angles to 
the flank of the animals were used for identification with I3S Pattern PID 
software (Den Hartog and Reijns, 2014), and that matching accuracy 
could be affected by photo angle variations. Similarly, Calmanovici et al. 
(2018) found that photos taken of turtles underwater at different angles, 
distances, and in different light conditions reduced the accuracy of 
matches using I3S Pattern. Likewise, Long and Azmi (2017) were able to 
more successfully identify individual turtles through NPM if photos were 
taken at horizontal and vertical angles <45◦ from where face scales were 
visible. In a more recent study, Steinmetz et al. (2018) also found pho-
tographs taken at high vertical or horizontal angles usually resulted in 
poorer potential matches among photographs of nesting hawksbill 
(Eretmochelys imbricata) turtles on Mahé Island in the Seychelles. The 
difficulty of consistently photographing marine animals with little 
variation from a perpendicular angle is increased due to highly variable 
marine conditions at both temporal and spatial scales during diving or 
snorkeling. 

As an additional challenge, Carter et al. (2014) described adequate 
software and computing power as potential limitations because of the 
need to analyze many thousands of photograph pixels, especially if 
assessing color patterns is important in providing matches. The fact that 
many computer-assisted PID programs require laborious preprocessing 
manipulations of each photograph before new photographs can be 
queried or matched against the photo database (Calmanovici et al., 
2018; Carter et al., 2014; Chaves et al., 2016; Dunbar et al., 2014; Jean 
et al., 2010; Pauwels et al., 2008) means that both manual input time 
and expense to identify individuals increase correspondingly with 
increased photo entry requirements. 

If PID software is to be both effective at matching individual animals, 
and useful for general utility by both trained scientists and community 
scientists, it would be best to effectively reduce or eliminate the factors 
that are consistently reported as drawbacks in PID studies. Reducing or 
eliminating these drawbacks may help decrease manipulation time and 
requirements for extensive user training, as well as increase tolerance to 
low quality data that includes varied viewpoints and photographic 
conditions, ultimately improving PID software for analyzing low-quality 
photos from a variety of angles and lighting regimes. These features are 
especially important if animals are to be photographed within a marine 
environment in which it may be nearly impossible to repeatedly 
photograph the animal in similar light conditions and from the same 
angle. 

The purpose of this study was to evaluate the accuracy of the 
computerized PID program, HotSpotter (HS) (Crall et al., 2013) that 
requires almost no photographic manipulations (Dunbar et al., 2017). 
HS works by localizing and matching Scale-Invariant Feature Transform 
(SIFT) (Lowe, 2004) keypoints using the Local Naïve Bayes Nearest 
Neighbor (McCann and Lowe, 2012) search algorithm. We aimed to 
determine if turtles within an open population of juvenile hawksbills in a 

marine protected area could consistently be identified over a period of 
years from photographs taken with different photographic devices, and 
in variable in-, and out-of-water conditions, including lighting, angle, 
and annual differences. 

2. Methods and materials 

2.1. Study site 

Our study site was within the boundaries of the Sandy Bay West End 
Marine Reserve (SBWEMR) on the western end of the island of Roatán, 
Honduras (16◦20′24′′N, 86◦19′48′′W). Roatán is the largest of the three 
Bay Islands with a straight-distance length of approximately 46 km, and 
is located approximately 52 km north of mainland Honduras (Fig. 1). 
The SBWEMR is a locally governed marine protected area (MPA) 
covering approximately 13 km of coral reefs and mangroves between the 
towns of West Bay and Sandy Bay. Specific details on benthic habitat in 
the SBWEMR are provided in Hayes et al. (2017) and Baumbach et al. 
(2019). 

2.2. Turtle measurements and photo collection 

From June to September over 2014–2019, we conducted daily in- 
water observations of hawksbills in the SBWEMR using SCUBA, and 
by following and photographing turtles during as much of each dive as 
possible. During in-water surveys, we collected photographs of left and 
right facial scale patterns, dorsal head scale patterns, and general full- 
body photographs of hawksbill turtles at 49 dive sites using a variety 
of underwater cameras (see Supplementary Table 1). All underwater 
photos were captured in different visibility conditions, and at random 
angles to turtles at a distance of 1–6 m. These methods are further 
detailed in Dunbar et al. (2008) and Hayes et al. (2017). Photographs 
collected by researchers during 2006–2011 and 2014–2018 were used to 
establish the photographic database with HS, while photographs 
collected by a collaborator during 2016–2019 were added to the data-
base and used to test if matching photographs existed. During 
2016–2019, out-of-water photographs of turtles were also taken after 
they were hand captured, during the process of measuring and weigh-
ing. Appropriate out-of-water photographs of the left and right sides of 
the face and dorsal surface of the head, were also used to populate and 
initialize the HS database. Photographs from all years were taken of 
juvenile hawksbills (with the exception of one sub-adult male in 2017) 
found within the boundaries of the SBWEMR. Furthermore, several 
hundred photographs were submitted by community scientists through 
an openly available web-based GIS mapping system (Baumbach and 
Dunbar, 2017), and were likewise used to establish the photo-database. 

To further aid in our identification of hand captured turtles, we 
applied uniquely coded Inconel (681 Style; Archie Carr Center for Sea 
Turtle Research, Gainesville, FL, USA) flipper tags to the large proximal 
scale located on the front right flipper of each hand-captured juvenile 
hawksbill within the SBWEMR from 2016 to 2019. In addition, we also 
collected morphometric data for each turtle, including curved carapace 
length (CCL), curved carapace width (CCW), and weight. For those 
turtles that were not hand-captured, we collected in-water photographs 
during focal follows using SCUBA. Photographs were taken of the dorsal 
head surface and both sides of the face from as many angles as possible, 
as well as flipper tags, if present. Tag numbers were kept in a flipper tag 
database that could be cross-referenced with matched turtle photo-
graphs from HS. 

2.3. Using HotSpotter 

To standardize photo names within the HS database, we labeled 
photographs with the code L (Left), R (Right), and T (Top) for the left 
side of the face, right side of the face, and dorsal surface of the head, 
respectively. We initially labeled all photographs of the same animal 
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with that animal’s unique Turtle Identification Number (TIN) with the 
additional identifier of L, R, or T. These photographs were selected to be 
placed in a HotSpotter Turtles (HST) file folder. On opening the HS 
program, we selected the HST folder for the program to reference and 
upload all photographs in the HST folder. To create and add to the initial 
HS database queue, each photograph was individually selected from 
within HS and a chip made to select the area of the photograph the 
computer was to view (Fig. 2). This chip was made by adding two digital 
spots in horizontally and vertically opposing positions on the photo-
graph, which were then automatically converted by the program to an 
‘area of interest’ box, with all other information outside of this box 
ignored by HS. The majority of these chips required no manual manip-
ulation, with the exception of occasionally orienting photographs to 
standardize head or face position within the chip. However, this entire 
chip creation and annotation process has recently been automated 
(Parham et al., 2018) through the implementation of HS into the 
Wildbook open source platform (Berger-Wolf et al., 2017). 

Once chips were created for each image in the database, we ran 
queries to compare the selected image against all other photographs to 
determine if a match existed for an individual’s top, left, or right side, 
thus building a series of photographs of the same animal. If multiple L, R, 
or T photographs were queried through HS, we labeled them with 
consecutive numbers (i.e. TIN035_R1; TIN035_R2, etc.). These photo-
graphs helped HS to analyze and recognize unique features of individual 
turtles from multiple angles and with photographs from different cam-
eras, distances, underwater lighting, and visibility conditions. 

When new photographs of turtles were acquired, we ran a query to 
determine if a match existed to an individual already within the data-
base. A match score for each query image is computed by summing the 
similarity scores for each of its extracted Scale-Invariant Feature 

Transformed (SIFT) features against its nearest neighbor matched from 
the database. HS aggregates all closest matches for each annotation by 
performing a random sample consensus (RANSAC)-based spatial veri-
fication algorithm to filter out poor correspondences, then re-ranks the 
results. 

2.4. Photo conditions for HotSpotter analysis 

We conducted a subjective assessment of HS using a variety of 
hawksbill image angles and qualities to provide a description of suc-
cessful match conditions. To assess image angles, we randomly selected 
images of two individual hawksbills (RMP T047 and RMP T110) from 
the test database that were taken of either the right or left side of the 
head and successfully matched to previous images already present in HS. 
We then selected two additional images of the same two individuals that 
presented large variations in angles of the right or left sides of the head 
(relative to the test photo) that had previously resulted in successful 
matches. It was beyond the scope of our study to assess specific angles 
between the camera and hawksbill, or between the test image and 
database image. To assess photo quality, we searched HS to find low- 
quality chips that were either blurry with little to no facial scute defi-
nition, and at the same time did not successfully match to any images in 
the database (RMP T050), or were semi-blurry with some definition, yet 
successfully matched images (RMP T054 and RMP T055). We then 
compared low-quality chips (presented at 72 dpi) to high-quality chips 
(presented at 180 or 350 dpi) of the same individual that were able to 
produce successful matches. 

Fig. 2. An example of a “chip” made by placing digital spots on the image to the upper right and lower left of the area of interest in the image. This chip directs HS to 
ignore all aspects of the image that lie outside the area of interest. 
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2.5. HotSpotter vs flipper tag matching tests 

To evaluate the accuracy of HS, we conducted a two-way blind test 
by sending photos of the R, L, and T of tagged turtles among authors. 
Only the sending author knew the tag numbers of photographed turtles, 
which were then verified by the receiving authors by choosing the best 
match from six HS result choices. As a default, HS is programmed to 
display only the six choices most likely to match the photo being 
queried. A report of queried turtle tag numbers was then provided to the 
sending author for confirmation of turtle identification. 

2.6. Statistical analyses 

All statistical analyses were done in SAS 9.4 (SAS Institute, Cary NC) 
and R 3.5 (R Core Team, 2018). Frequencies and percentages of correct 
matches were calculated for each of the default six potential matches 
provided by HS. Stratified frequencies and percentages of correct 
matches were also calculated for potential matches within in-water, out- 
of-water, and side of the turtle (i.e. right, left, and dorsal side) cate-
gories. Descriptive statistics (mean and standard deviation) were also 
computed for the calculated scores of all potential matches. The calcu-
lated scores for all potential matches were provided by HS and were 
analyzed to determine if a consistent cut-off score could be calculated for 
a true first choice match. Identifications provided by HS for each indi-
vidual were evaluated for sensitivity and specificity by comparison to 
the positive ID made through the flipper tag associated with each turtle. 

The flipper tag number was then matched to the ID provided by HS in 
the first six matches. To calculate the cut-off score based on the first- 
choice match, we assessed sensitivity and specificity of test photo 
matches at each potential cut-off score, and selected the score that 
maximized sensitivity and specificity. 

3. Results 

In its default output, HS returns a panel of six potential matches 
ranked from the most likely (highest score) to the least likely (lowest 
score) positive match (Fig. 3). Scores are calculated based on both the 
number of similar features and the degree of similarity between the test 
photo and the database photos. Lines between the two photographs 
indicate matched features according to the similarity of that feature in 
both photographs. A color scale is provided with each output to show the 
similarity strength of each feature (Fig. 4). 

We queried a total of 158 hawksbill images from within the SBWEMR 
against 2136 target hawksbill images in our HS photo database. Of 
these, 86.1% were in-water photographs, while 13.9% were out-of- 
water photographs. Table 1 provides the overall number of right, left, 
and top (dorsal) photos presented for matching, as well as the main 
matching results. When all 54 test photos of the right side (including in- 
water and out-of-water) were combined, HS accurately matched test 
photos 81.5% of the time in the first choice, increasing in cumulative 
accuracy to 96.3% by the sixth choice. We found left side matches were 
slightly less accurate (Table 1). When all left side test photos (including 

Fig. 3. The best six results of individual matches provided by HS after a query photo is run against the photo database. Match scores are used to rank the potential 
matches from first position (highest score = highest ranked match) to sixth position (lowest score = lowest ranked match) in descending order. Photos are queried by 
assigning the photo a chip identification (cid) and then querying that cid (qcid) against other cids already stored in the database. Note that in this example, the first 
five match choices are annotated with a ‘*TRUE*’ label, as well as a green box around the matched image from the database, while the sixth choice is annotated with 
a ‘*FALSE*’ label and a red box around the potential matched image from the database. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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in-water and out-of-water) were combined, HS increased cumulative 
accuracy from 77.4% in the first choice to 88.7% by the sixth choice. Of 
the 51 dorsal head photos tested, 90.2% were in-water, with 9.8% out- 
of-water. Correct matches by HS increased cumulatively from 80.3% in 
the first choice to 88.2% by the sixth choice. 

When evaluating HS only with in-water photos (n = 136), we found a 
high degree of match accuracy, from 83.8% in the first choice, to 94.1% 
by choice number six. Matching accuracy was lower when HS was 
evaluated with the 22 out-of-water photographs. Matching accuracy 
started at only 54.6% with the first choice, and increased to only 72.7% 

Fig. 4. A high score, first-choice match showing line indications of similarly matched features between the query image (top) and the matched image from the 
database (bottom). Line colors from dark red to bright yellow (in the color score bar to the right of the images) indicate increasing similarity strength scores (from 
100 to 300 in this example) of each matched feature. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
The number of test photos of each side of the head along with the percentage of 
photos that were taken in-water or out-of-water. First-choice percentage rep-
resents the percentage of photos that were correctly matched in the first results 
and sixth choice represents a correct match in any of the six results.  

Side n In-Water 
(%) 

Out-of-Water 
(%) 

First Choice 
(%) 

Sixth Choice 
(%) 

Right 54 83.3 16.7 81.5 96.3 
Left 53 84.9 15.1 77.4 88.7 
Top 51 90.2 9.8 80.3 88.2  

Table 2 
The numbers and percentages of matches and non-matches within a stepwise 
choice selection for six possible choices.  

Choice number n (%)  

Match Not matched 

Only first choice match 126 (79.8%) 32 (20.3%) 
First two choice matches 136 (88.1%) 22 (13.9%) 
First three choice matches 139 (88.0%) 19 (12.0%) 
First four choice matches 140 (88.6%) 18 (11.4%) 
First five choice matches 143 (90.5%) 15 (9.5%) 
First six choice matches 144 (91.1%) 14 (8.9%)  
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by the sixth match choice. 
Overall, when we considered the cumulative match percentages 

across all images (face views, head views, and in- and out-of-water), HS 
was able to correctly match test photos 79.8% of times in the first choice 
and up to 91.1% of times within the first 6 choices presented to the user. 
Table 2 provides cumulative stepwise matches for the six choices, 
ranging from first choice only, to all six choices. 

Our qualitative analyses of image angle variances demonstrated that 
HS was capable of consistently identifying individual turtles even when 
substantial differences in both horizontal and vertical angles exist 
among captured images (Fig. 5). Matching power is known to decline 
with severity of the angular difference according to the limitations of the 
underlying Scale-Invariant Feature Transformed (SIFT) algorithm, 
which is roughly estimated at 50% match probability loss at 50 degrees 
(Lowe, 2004). This is sufficient tolerance for our real-world application. 
In Fig. 6, we present two variations of low-quality (blurry, 72 dpi) verses 
high-quality (clear, 180 or 350 dpi) images that were tested in HS. We 
found that only the lowest-quality, blurry images in which individual 
scutes were indistinguishable were unable to be matched by HS. In 
contrast, HS was able to correctly match moderately blurry images 
(Fig. 6). 

On analyzing the match scores for all six HS choices (which ranged 
from 0 to 51,009), the average scores ranged from 5438.3 (first choice) 
to 575.6 (sixth choice) (Fig. 7). A cut-off value of 1850 (lower than the 
average score) for the first-choice match provided the most optimal 
accuracy (84.2%), sensitivity (84.1%), and specificity (87.5%) values. 
As the cut-off value decreased from the mean score, sensitivity increased 
from 31.0 to 86.5%, while specificity decreased from 100 to 78.1% 

(Fig. 8). 

4. Discussion 

The HotSpotter photo ID software has a configurable number of 
matches it will return for a query. In this study, we used the default 
output of only six potential matches. We found the limited number of the 
default output of this program to be a distinct advantage over other 
programs, such as I3S that provide tens to hundreds of possible match 
outcomes that potentially require further manual verification or rejec-
tion (Calmanovici et al., 2018; Dunbar et al., 2014; Sacchi et al., 2010). 
In a recent study on face recognition of 118 in-water photos of 32 greens 
and 1 hawksbill by Calmanovici et al. (2018) they found I3S Pattern 
correctly matched 86% of images within the top 20 ranked photos, with 
48% (n = 56) of these matched in the first position. In comparison, we 
found HotSpotter to have a higher correct matching result of 94% for in- 
water test images within the 6 matches of the default output, with 84% 
of these matches in the first-choice position. 

Results appear to be similarly accurate for left, right, and top images, 
although left images had slightly lower cumulative match percentages in 
the first choice. These differences in match scores are likely due to small 
differences in image viewpoints, due to data variance. 

We found matching accuracy was lower with photos taken out-of- 
water than in-water. In contrast, Dunbar et al. (2014) found good 
matching results using I3S Classic for a small set of turtle tests using out- 
of-water photos, but stated that the program was reliant on photos taken 
from similar angles and in similar light and distance conditions. Those 
authors also used a relatively small database of approximately 600 

Fig. 5. Examples of photo angle variations for the 
turtles RMP T047 and RMP T110. In both cases, 
photo 1 was the test photo for both RMP T047 and 
RMP 110, respectively. Photos 2 and 3 are previously 
captured photos that show wide variances in vertical 
and horizontal angles that resulted in successful 
matches when queried respectively. Additionally, we 
note the variation in brightness, color, and conditions 
among photos that nevertheless resulted in successful 
matches of the right side for RMP T047, and the left 
side for RMP T110.   

S.G. Dunbar et al.                                                                                                                                                                                                                              



Journal of Experimental Marine Biology and Ecology 535 (2021) 151490

8

photographs and only tested images of two turtles. Likewise, several 
studies report that matching accuracy of I3S decreased, or was likely to 
decrease when variability in photo angle, light, and distance (typical 
variability of in-water conditions) were factors (Calmanovici et al., 
2018; Chaves et al., 2016; Sacchi et al., 2010). We found HS able to 
consistently match images that had relatively wide variations in indi-
vidual or combined horizontal and vertical angles. Additionally, HS was 
able to take advantage of even low-quality, blurry images to make 
successful matches of individual turtles, although we found very low- 
quality images which do not provide any scute definition are unable 
to be accurately matched. These features provide valuable advantages of 
HS over other PID processing software in that images collected during 
highly variable in-water conditions (including pitch and roll of both the 
photographer and the turtle) are useful for both populating the database, 
as well as reducing limitations on correctly matching individuals. 

In contrast to results by Calmanovici et al. (2018), our current results 
show greater accuracy with the highly variable conditions of photos 
taken in-water than those taken out-of-water. It is highly likely that with 
an increased number of out-of-water photos taken in variable angle, 
light, and distance conditions, accuracy of out-of-water matching would 

greatly improve. Crall et al. (2013) also found that HS matching accu-
racy improved when numbers of photos per individual zebra increased. 

Match scores provided by HS represent a sense of visual similarity 
between the query image and the background image. In general, the 
scores for a match will be higher when: 1) there are few but very similar 
features between the two images and/or 2) there are very many, but 
weakly similar features. Both conditions could signify a potential match. 
The advantage of these scores is that they can be used to calculate a cut- 
off value for the first choice match (score of 1850), above which the 
accuracy is 84% that the first-choice is a true match. Although we sought 
a cut-off value only for the first-choice match to be able to minimize the 
need to review all other potential matches, users may be able to calcu-
late cut-off scores for any match choice position available. 

4.1. Conclusion 

In this study we have demonstrated the highly accurate matching of 
hawksbill photos in both in-water and out-of-water conditions with the 
nearly fully automated HotSpotter PID program. HotSpotter is based on 
proven feature extractors that are robust to scale, illumination, and in 

Fig. 6. Examples of photo quality and resolution. Photo quality varied widely, from slight to extreme blurriness. Only extremely blurry photos (RMP T050) were not 
able to be matched in HotSpotter. Photo resolution varied from 72 to 350 dpi. Although match success was higher with high-quality photos, HotSpotter was also able 
to match low-quality photos with minimal individual facial scute definition. 
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some cases, mild distortions, and variations in quality and photo angle, 
making it an ideal candidate for finding high-quality matches. Addi-
tionally, HotSpotter, unlike some computer-based PID programs, bene-
fits from a suite of post-processing algorithms to reduce obvious false 
matches, reduce the importance of background textures not belonging to 
an animal, and intelligently rank the best matches for the user to review. 
This is an obvious and important advantage if photos are to be gathered 
by community scientists who contribute their images to research pro-
jects, or if photos are harvested from Internet sources. The integration of 
HS into the Wildbook-based Internet of Turtles1 (Berger-Wolf et al., 

2017; Leslie et al., 2015) is likely to increase the potential for remotely 
identifying individuals of all marine turtle species on a global scale. As a 
result, these technologies are likely to spawn new mechanisms for 
tracking individuals, furthering our understanding of sea turtle move-
ments and habits, gathering information on population dynamics, and 
highlighting population hotspots for future investigations. 

Some investigators have recognized the potential limitations of 
computing power to analyze PID datasets (Carter et al., 2014). We also 
concede there are additional factors to be considered when running PID 
programs on different forms of hardware. However, we suggested that 
while challenges to computing hardware power are likely to be resolved 
in the near future, the more systemic challenge both now and in the 
future, will be the development of more robust algorithms that are able 
to maintain matching accuracy while assessing very large photo data-
bases (i.e. >100,000 images). Nevertheless, with additional advances in 
computer processing and software-specific developments, there will 
doubtless be new developments in the application of computer-driven 
PID for ever-widening suites of marine taxa. 
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Supplementary data to this article can be found online at https://doi. 

Fig. 7. Boxplots showing the minimum and maximum HS match scores along 
with the median and interquartile range for the top 6 match choices. 

Fig. 8. A plot of sensitivity and specificity values used to identify optimal cut- 
off values for first choice match scores. 

1 https://iot.wildbook.org 
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